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Scaling Laws for Geomagnetic Tail
Current Sheet Acceleration

1. INTRODUCTION

Lyons and Speiser1 have calculated proton accelerations in the electric cross
field of the geomagnetic tail. Although these calculations are fairly extensive, as
the authors comment, there is still a fair amount of unexplored territory as far as
combinations of relevant parameters are concerned. The purpose of this report is
to present considerations of a scaling nature and to show that these considerations
may be profitably utilized to correlate, organize, and verify groups of solutions

with regard to parametric variation.

2. DERIVATION AND DISCUSSION OF GENERAL SCALING LAWS

Although the equations involved in these calculations are available, it is not
necessary to refer to them to obtain scaling/dimensional information. This latter
canbe accomplished by use ofthe Buckingham pi theorem, which is stated here with-

out proof. Details may be found in Langhaar, 2 pp. 18 and 47 ff. The theorem 1s:
(Received for Publication 16 July 1987)

1. Lyons, L..R., and Speiser, T.W, (1982) Evidence for current sheet accelera-
tion in the geomagnetic tail, J. Geophys. Res. 87:2276,

2. Langhaar, Henry L. (1951) Dimensional Analysis and Theory of Models,
Wiley, New York,
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If an equation is dimensionally homogeneous, it can be reduced to a relationship
among a complete set of dimensionless products. If the number of input param-
eters is n, and the number of fundamental dimensions is r, then the number of
dimensionless products in the set willbep = n -r.

There are eight parameters involved in the solutions of the I.yons and Speiser
equations, Bz, BxL’ E, e, m, Vi » V,, d. Of these, the first five are equation

parameters, the next two initial conditions, and the last, both. These parameters

are:
BZ Constant magnetic field normal to tail current sheet.
I B, | Constant magnetic field in x direction for |z! > d.
E Constant electric field normal to Bz and BxL'
e Particle charge.
m Particle mass.
V) Initial component of velocity along the magnetic field.
v, Initial component of velocity normal to the magnetic field.
d Sheet half-thickness in z direction.

Since the number of fundamental units is four (length, mass, time, and charge),
there are at most 8 - 4 = 4 independent dimensionless parameters that may appear
in the solutions for any unknown quantity. These may be formed in a multiplicity
of ways, and we choose, for our purposes, the following:

. v 2 ,1/2 ) 2
B [ /B,;V, /Vy; (VS +V%)"'* B JE;m/e E/BJd

The meaning of the first two is clear, and the third is a ratio of initial velocities
to a drift velocity. The last, by multiplication above and below by E, is seen to be
a ratio of kinetic energy of drift, to the drop in potential energy, Ed, across the
half-sheet.

We intend to concentrate our attention on results shown in Figure 8 of Lyons
and Speiser, ! and this figure is reproduced and enlarged in Figure 1. Table 1
lists the parameters characterizing the curves shown in the figure. Using the
above dimensionless groups, we form an expression for UI’ the energy increase
that is plotted as ordinate,

2)1/2

Up = eEd FI(By /B), (V /V,), (Vﬁ + V2

I

2
L BZ/E). {m/e E/Bzd)] (1)

Here, I is an unspecified function, and, hence, the quantity preceding it may be
chosen arbitrarily, subject only to the restriction that it have the dimensions of
energy.

This general expression for the energy increase allows one to present all

available information on UI in terms of the four dimensionless parameters chosen,

it is possible, and L.yons and Speiserl indicate, that U, will not depend on all of
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_"). these parameters; that is, the functional dependence may be a constant for some of
oy, them. As we shall see, however, such conclusions may imply further restrictions
»
3 3‘ on form; and these must all constitute a picture self-consistent and compatible
"
i\ with actual solutions. From Eq. (1), certain scaling laws are evident, Thus, for
4%
® example, if \'” , V', are unchanged; E, Bz' BxL' are multiplied by a; and d by 1/a,
::. then UI remains unchanged. Such a scaling law forms a means of checking the
»
{‘::‘ ‘ consistency of solutions. Untortunately, Lyons and Speiser used only two values
:’,:' for d, and these did not have the proper ratio to test the law. A second law is the
N
;: following: If E is multiplied by az; B,, BxL' V., V) are multiplied by a; and d is
X unchanged, then L'I is multiplied by a2. Again, there is not, in the present instance,
U
:: the proper combination of parameters available to test this, If would be of interest
ol
,?: in future calculations to do so.
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st Table 1. Parameters Characterizing the Curves
"S\{- Shown in Figure 1
Ay "
A
”"-' Curve # E (v/m) B, (v) E/B,
W ;
‘o 1 1x 10‘3_4 1.0 1x 107 |
e 2.5x 10 0.25 |
*\::'1_» |
L) - -
N 2 5x 1074, 1.0 5x 1074 |
s 2.5x 10 0.5 !
-.:{' |
o -4 -4 ‘
A 3 2,5x 10 1.0 2.5x 10 i
e, |
4 125 x 107 1.0 1.25 x 107
ca 2.5 x 10 2.0
(e
oy -5 -5
A 5 6.25 x 1(_)4 1.0 6.25 x 10
N 2.5 x 10 4.0
BN
' «.::: B, =20y: d = 1000km: a eject = 50
A
3
Ly
10 3. APPLICATION TO DATA OF LYONS AND SPEISER ;
S
o
_si: Lyons and Speiser1 present some evidence to indicate that Uy: (1) is indepen-~
Y ":-: dent of BxL’ and (2) depends not on E and BZ individually, but only the ratio E/Bz'
7 This can only be possible if the functional dependence on the group (m/e E/Bid) is
;:' linear, in which case, with BxL/Bz a constant, Eq. (1) becomes
bes
oy . 2 L2 2,1/2
o

Thus, the above two constraints lead automatically to the further result, that UI

is independent of d. This result is confirmed by their calculations, which show that

W

v

:'o UI is close to invariant for a 5:1 change in d.

0N The second general scaling law, when applied to Eq. (2), becomes: If E is
‘, multiplied by az; Bz' VL ’ V" multiplied by a; then UI is multiplied by a2. Here,
.\,5": data is available to check the law, and the results of such a comparison are shown
0% in Figure 2.

5 ’

M The set of points marked ''x"" scales the two curves marked 1 and 2 in Figure 1,

N for a value of "a'"' = 2. A value (plotted as abscissa on Figure 2) is chosen for U,
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Figure 2. Deviation From Scaling Law, A Versus Initial Energy Ug (Data From
Figure 1)

and a corresponding value UI)2 (second subscript refers to curve number) is read
from the graph of Figure 1. Then, for an initial energy 4Uo. the corresponding
value UI)1 is read from the figure. A is then defined as

Upy

Upy

- 4Up),

A= 100% (3)

If A = 0, the law is confirmed for a = 2, It is seen that these two curves scale

very closely. ‘
For the set of points marked o', the same procedure is followed, using the ‘

lower two curves, #4 and #5. In this case, there is a systematic departure from |

the scaling law, amounting to ~ 30 percent at the maximum, for an initial energy

U . 0.5keV,

Although allowances must be made for the inaccuracy of reading values from !

A a graph (the line thickness amounts to some 7 percent of the ordimate value), the }
, consistently low values of A for the curves 1 and 2 and the higher ones for curves }
4 and 5 indicate that a genuine discrepancy exists here, Further, the fact that for

% curves 1 and 2, and 14 values of Uo' in every case, A 2 o cannot easily be ex-~
i
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plained on a statistical basis. Thus, it is possible that, even for curves 1 and 2,
there is a slight deviation from proper scaling.

To the extent that this scaling law is obeyed, it shows that these curves are
not independent, but can be generated one from the other; and it also provides a
consistency check on the calculations. To the extent that the law is violated, it
shows a lack of consistency in the assumptions on parameter dependence and/or
possible errors in the calculations themselves. Formulas such as Eq. (2) also of-
fer a simple means of constructing empirical formulas to represent the results of
numerical calculations.

Martin3 has made similar calculations, but with a variation in the x as well as
the z component of the magnetic field. The x-component of the field is still char-
acterized by a single parameter, so that the total number of equation parameters
appearing in a dimensional analysis remains unchanged. However, another initial
coordinate, in the x direction, is now needed to completely specify the initial value
problem, and this will result, in general, in an additional dimensionless group.
These calculations, contrary to those of Lyons and Speiser, 1 show substantial var-
iations in U; with plasma sheet thickness. These calculations are all for a fixed
initial x = X0 and hence, the above derived scaling laws are still valid. We there-~
fore conclude that UI will depend not only on the ratio E/Bo (Bo is, here, a con-
stant characterizing the strength of the magnetic field), but must also depend on E
and/or B0 independently. There is not, however, sufficient data to test this law.
Here too, a knowledge of scaling laws would have been advantageous in correlating,
checking internal consistency, and minimizing the number of calculations required
for parametric exploration.

These laws offer a useful adjunct to such calculations of this type as may be

undertaken in the future.

3. DMartin, R.J., Jr. (1986) The effect of plasma sheet thickness on ion accelera-
tion near a magnetic neutral line, in Jon Acceleration in the Magnetosphere
and Ilonosphere, American Geophysical Union, Washington, D.C., pp. 141-
145,
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